Abstract:Efficient energy management in prosumer households is key to alleviating grid stress in an energy transition marked by electric vehicles (EV), renewable energies and battery storage. However, it is unclear how households optimize prosumer EV charging. Here we study real-world data from 90 households on fixed-rate electricity tariffs in German-speaking countries to investigate the potential of Deep Reinforcement Learning (DRL) and other control approaches (Rule-Based, Model Predictive Control) to manage the dynamic and uncertain environment of Home Energy Management (HEM) and optimize household charging patterns. The DRL agent efficiently aligns charging of EV and battery storage with photovoltaic (PV) surplus. We find that frequent EV charging transactions, early EV connections and PV surplus increase optimization potential. A detailed analysis of nine households (1 hour resolution, 1 year) demonstrates that high battery capacity facilitates self optimization; in this case further algorithmic control shows little value. In cases with relatively low battery capacity, algorithmic control with DRL improves energy management and cost savings by a relevant margin. This result is further corroborated by our simulation of a synthetic household. We conclude that prosumer households with optimization potential would profit from DRL, thus benefiting also the full electricity system and its decarbonization.
Abstract:Understanding the decisions made and actions taken by increasingly complex AI system remains a key challenge. This has led to an expanding field of research in explainable artificial intelligence (XAI), highlighting the potential of explanations to enhance trust, support adoption, and meet regulatory standards. However, the question of what constitutes a "good" explanation is dependent on the goals, stakeholders, and context. At a high level, psychological insights such as the concept of mental model alignment can offer guidance, but success in practice is challenging due to social and technical factors. As a result of this ill-defined nature of the problem, explanations can be of poor quality (e.g. unfaithful, irrelevant, or incoherent), potentially leading to substantial risks. Instead of fostering trust and safety, poorly designed explanations can actually cause harm, including wrong decisions, privacy violations, manipulation, and even reduced AI adoption. Therefore, we caution stakeholders to beware of explanations of AI: while they can be vital, they are not automatically a remedy for transparency or responsible AI adoption, and their misuse or limitations can exacerbate harm. Attention to these caveats can help guide future research to improve the quality and impact of AI explanations.
Abstract:A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.