Abstract:Current pre-trained language models have enabled remarkable improvements in downstream tasks, but it remains difficult to distinguish effects of statistical correlation from more systematic logical reasoning grounded on the understanding of real world. We tease these factors apart by leveraging counterfactual conditionals, which force language models to predict unusual consequences based on hypothetical propositions. We introduce a set of tests from psycholinguistic experiments, as well as larger-scale controlled datasets, to probe counterfactual predictions from five pre-trained language models. We find that models are consistently able to override real-world knowledge in counterfactual scenarios, and that this effect is more robust in case of stronger baseline world knowledge -- however, we also find that for most models this effect appears largely to be driven by simple lexical cues. When we mitigate effects of both world knowledge and lexical cues to test knowledge of linguistic nuances of counterfactuals, we find that only GPT-3 shows sensitivity to these nuances, though this sensitivity is also non-trivially impacted by lexical associative factors.
Abstract:Current pre-trained language models have enabled remarkable improvements in downstream tasks, but it remains difficult to distinguish effects of statistical correlation from more systematic logical reasoning grounded on understanding of the real world. In this paper we tease these factors apart by leveraging counterfactual conditionals, which force language models to predict unusual consequences based on hypothetical propositions. We introduce a set of tests drawn from psycholinguistic experiments, as well as larger-scale controlled datasets, to probe counterfactual predictions from a variety of popular pre-trained language models. We find that models are consistently able to override real-world knowledge in counterfactual scenarios, and that this effect is more robust in case of stronger baseline world knowledge -- however, we also find that for most models this effect appears largely to be driven by simple lexical cues. When we mitigate effects of both world knowledge and lexical cues to test knowledge of linguistic nuances of counterfactuals, we find that only GPT-3 shows sensitivity to these nuances, though this sensitivity is also non-trivially impacted by lexical associative factors.
Abstract:A characteristic feature of human semantic memory is its ability to not only store and retrieve the properties of concepts observed through experience, but to also facilitate the inheritance of properties (can breathe) from superordinate concepts (animal) to their subordinates (dog) -- i.e. demonstrate property inheritance. In this paper, we present COMPS, a collection of minimal pair sentences that jointly tests pre-trained language models (PLMs) on their ability to attribute properties to concepts and their ability to demonstrate property inheritance behavior. Analyses of 22 different PLMs on COMPS reveal that they can easily distinguish between concepts on the basis of a property when they are trivially different, but find it relatively difficult when concepts are related on the basis of nuanced knowledge representations. Furthermore, we find that PLMs can demonstrate behavior consistent with property inheritance to a great extent, but fail in the presence of distracting information, which decreases the performance of many models, sometimes even below chance. This lack of robustness in demonstrating simple reasoning raises important questions about PLMs' capacity to make correct inferences even when they appear to possess the prerequisite knowledge.
Abstract:A critical component of competence in language is being able to identify relevant components of an utterance and reply appropriately. In this paper we examine the extent of such dialogue response sensitivity in pre-trained language models, conducting a series of experiments with a particular focus on sensitivity to dynamics involving phenomena of at-issueness and ellipsis. We find that models show clear sensitivity to a distinctive role of embedded clauses, and a general preference for responses that target main clause content of prior utterances. However, the results indicate mixed and generally weak trends with respect to capturing the full range of dynamics involved in targeting at-issue versus not-at-issue content. Additionally, models show fundamental limitations in grasp of the dynamics governing ellipsis, and response selections show clear interference from superficial factors that outweigh the influence of principled discourse constraints.
Abstract:To what extent can experience from language contribute to our conceptual knowledge? Computational explorations of this question have shed light on the ability of powerful neural language models (LMs) -- informed solely through text input -- to encode and elicit information about concepts and properties. To extend this line of research, we present a framework that uses neural-network language models (LMs) to perform property induction -- a task in which humans generalize novel property knowledge (has sesamoid bones) from one or more concepts (robins) to others (sparrows, canaries). Patterns of property induction observed in humans have shed considerable light on the nature and organization of human conceptual knowledge. Inspired by this insight, we use our framework to explore the property inductions of LMs, and find that they show an inductive preference to generalize novel properties on the basis of category membership, suggesting the presence of a taxonomic bias in their representations.
Abstract:While sentence anomalies have been applied periodically for testing in NLP, we have yet to establish a picture of the precise status of anomaly information in representations from NLP models. In this paper we aim to fill two primary gaps, focusing on the domain of syntactic anomalies. First, we explore fine-grained differences in anomaly encoding by designing probing tasks that vary the hierarchical level at which anomalies occur in a sentence. Second, we test not only models' ability to detect a given anomaly, but also the generality of the detected anomaly signal, by examining transfer between distinct anomaly types. Results suggest that all models encode some information supporting anomaly detection, but detection performance varies between anomalies, and only representations from more recent transformer models show signs of generalized knowledge of anomalies. Follow-up analyses support the notion that these models pick up on a legitimate, general notion of sentence oddity, while coarser-grained word position information is likely also a contributor to the observed anomaly detection.
Abstract:As pre-trained language models (LMs) continue to dominate NLP, it is increasingly important that we understand the depth of language capabilities in these models. In this paper, we target pre-trained LMs' competence in pragmatics, with a focus on pragmatics relating to discourse connectives. We formulate cloze-style tests using a combination of naturally-occurring data and controlled inputs drawn from psycholinguistics. We focus on testing models' ability to use pragmatic cues to predict discourse connectives, models' ability to understand implicatures relating to connectives, and the extent to which models show humanlike preferences regarding temporal dynamics of connectives. We find that although models predict connectives reasonably well in the context of naturally-occurring data, when we control contexts to isolate high-level pragmatic cues, model sensitivity is much lower. Models also do not show substantial humanlike temporal preferences. Overall, the findings suggest that at present, dominant pre-training paradigms do not result in substantial pragmatic competence in our models.
Abstract:Pre-trained LMs have shown impressive performance on downstream NLP tasks, but we have yet to establish a clear understanding of their sophistication when it comes to processing, retaining, and applying information presented in their input. In this paper we tackle a component of this question by examining robustness of models' ability to deploy relevant context information in the face of distracting content. We present models with cloze tasks requiring use of critical context information, and introduce distracting content to test how robustly the models retain and use that critical information for prediction. We also systematically manipulate the nature of these distractors, to shed light on dynamics of models' use of contextual cues. We find that although models appear in simple contexts to make predictions based on understanding and applying relevant facts from prior context, the presence of distracting but irrelevant content has clear impact in confusing model predictions. In particular, models appear particularly susceptible to factors of semantic similarity and word position. The findings are consistent with the conclusion that LM predictions are driven in large part by superficial contextual cues, rather than by robust representations of context meaning.
Abstract:Pre-trained transformer language models have shown remarkable performance on a variety of NLP tasks. However, recent research has suggested that phrase-level representations in these models reflect heavy influences of lexical content, but lack evidence of sophisticated, compositional phrase information. Here we investigate the impact of fine-tuning on the capacity of contextualized embeddings to capture phrase meaning information beyond lexical content. Specifically, we fine-tune models on an adversarial paraphrase classification task with high lexical overlap, and on a sentiment classification task. After fine-tuning, we analyze phrasal representations in controlled settings following prior work. We find that fine-tuning largely fails to benefit compositionality in these representations, though training on sentiment yields a small, localized benefit for certain models. In follow-up analyses, we identify confounding cues in the paraphrase dataset that may explain the lack of composition benefits from that task, and we discuss potential factors underlying the localized benefits from sentiment training.
Abstract:Building on research arguing for the possibility of conceptual and categorical knowledge acquisition through statistics contained in language, we evaluate predictive language models (LMs) -- informed solely by textual input -- on a prevalent phenomenon in cognitive science: typicality. Inspired by experiments that involve language processing and show robust typicality effects in humans, we propose two tests for LMs. Our first test targets whether typicality modulates LM probabilities in assigning taxonomic category memberships to items. The second test investigates sensitivities to typicality in LMs' probabilities when extending new information about items to their categories. Both tests show modest -- but not completely absent -- correspondence between LMs and humans, suggesting that text-based exposure alone is insufficient to acquire typicality knowledge.