Sepehr
Abstract:Vision-Language Models (VLMs) have attained exceptional success across multimodal tasks such as image captioning and visual question answering. However, their robustness under noisy conditions remains unfamiliar. In this study, we present a comprehensive evaluation framework to evaluate the performance of several state-of-the-art VLMs under controlled perturbations, including lighting variation, motion blur, and compression artifacts. We used both lexical-based metrics (BLEU, METEOR, ROUGE, CIDEr) and neural-based similarity measures using sentence embeddings to quantify semantic alignment. Our experiments span diverse datasets, revealing key insights: (1) descriptiveness of ground-truth captions significantly influences model performance; (2) larger models like LLaVA excel in semantic understanding but do not universally outperform smaller models; and (3) certain noise types, such as JPEG compression and motion blur, dramatically degrade performance across models. Our findings highlight the nuanced trade-offs between model size, dataset characteristics, and noise resilience, offering a standardized benchmark for future robust multimodal learning.
Abstract:This paper introduces a novel framework combining LLM agents as proxies for human strategic behavior with reinforcement learning (RL) to engage these agents in evolving strategic interactions within team environments. Our approach extends traditional agent-based simulations by using strategic LLM agents (SLA) and introducing dynamic and adaptive governance through a pro-social promoting RL agent (PPA) that modulates information access across agents in a network, optimizing social welfare and promoting pro-social behavior. Through validation in iterative games, including the prisoner dilemma, we demonstrate that SLA agents exhibit nuanced strategic adaptations. The PPA agent effectively learns to adjust information transparency, resulting in enhanced cooperation rates. This framework offers significant insights into AI-mediated social dynamics, contributing to the deployment of AI in real-world team settings.