Abstract:Search-engine date filters are widely used to enforce pre-cutoff retrieval in retrospective evaluations of search-augmented forecasters. We show this approach is unreliable: auditing Google Search with a before: filter, 71% of questions return at least one page containing strong post-cutoff leakage, and for 41%, at least one page directly reveals the answer. Using a large language model (LLM), gpt-oss-120b, to forecast with these leaky documents, we demonstrate an inflated prediction accuracy (Brier score 0.108 vs. 0.242 with leak-free documents). We characterize common leakage mechanisms, including updated articles, related-content modules, unreliable metadata/timestamps, and absence-based signals, and argue that date-restricted search is insufficient for temporal evaluation. We recommend stronger retrieval safeguards or evaluation on frozen, time-stamped web snapshots to ensure credible retrospective forecasting.
Abstract:Evaluating LLM forecasting capabilities is constrained by a fundamental tension: prospective evaluation offers methodological rigor but prohibitive latency, while retrospective forecasting (RF) -- evaluating on already-resolved events -- faces rapidly shrinking clean evaluation data as SOTA models possess increasingly recent knowledge cutoffs. Simulated Ignorance (SI), prompting models to suppress pre-cutoff knowledge, has emerged as a potential solution. We provide the first systematic test of whether SI can approximate True Ignorance (TI). Across 477 competition-level questions and 9 models, we find that SI fails systematically: (1) cutoff instructions leave a 52% performance gap between SI and TI; (2) chain-of-thought reasoning fails to suppress prior knowledge, even when reasoning traces contain no explicit post-cutoff references; (3) reasoning-optimized models exhibit worse SI fidelity despite superior reasoning trace quality. These findings demonstrate that prompts cannot reliably "rewind" model knowledge. We conclude that RF on pre-cutoff events is methodologically flawed; we recommend against using SI-based retrospective setups to benchmark forecasting capabilities.