Alert button
Picture for Alexey Shevtsov

Alexey Shevtsov

Alert button

Systematic Clinical Evaluation of A Deep Learning Method for Medical Image Segmentation: Radiosurgery Application

Add code
Bookmark button
Alert button
Aug 21, 2021
Boris Shirokikh, Alexandra Dalechina, Alexey Shevtsov, Egor Krivov, Valery Kostjuchenko, Amayak Durgaryan, Mikhail Galkin, Andrey Golanov, Mikhail Belyaev

Figure 1 for Systematic Clinical Evaluation of A Deep Learning Method for Medical Image Segmentation: Radiosurgery Application
Figure 2 for Systematic Clinical Evaluation of A Deep Learning Method for Medical Image Segmentation: Radiosurgery Application
Figure 3 for Systematic Clinical Evaluation of A Deep Learning Method for Medical Image Segmentation: Radiosurgery Application
Figure 4 for Systematic Clinical Evaluation of A Deep Learning Method for Medical Image Segmentation: Radiosurgery Application
Viaarxiv icon

Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation

Add code
Bookmark button
Alert button
Jul 20, 2020
Boris Shirokikh, Alexey Shevtsov, Anvar Kurmukov, Alexandra Dalechina, Egor Krivov, Valery Kostjuchenko, Andrey Golanov, Mikhail Belyaev

Figure 1 for Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation
Figure 2 for Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation
Figure 3 for Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation
Figure 4 for Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation
Viaarxiv icon

CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification

Add code
Bookmark button
Alert button
Jun 02, 2020
Mikhail Goncharov, Maxim Pisov, Alexey Shevtsov, Boris Shirokikh, Anvar Kurmukov, Ivan Blokhin, Valeria Chernina, Alexander Solovev, Victor Gombolevskiy, Sergey Morozov, Mikhail Belyaev

Figure 1 for CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification
Figure 2 for CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification
Figure 3 for CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification
Figure 4 for CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification
Viaarxiv icon

Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation

Add code
Bookmark button
Alert button
Sep 06, 2019
Boris Shirokikh, Alexandra Dalechina, Alexey Shevtsov, Egor Krivov, Valery Kostjuchenko, Amayak Durgaryan, Mikhail Galkin, Ivan Osinov, Andrey Golanov, Mikhail Belyaev

Figure 1 for Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation
Figure 2 for Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation
Figure 3 for Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation
Figure 4 for Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation
Viaarxiv icon