Abstract:This paper proposes a method for unsupervised whole-image clustering of a target dataset of remote sensing scenes with no labels. The method consists of three main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a labelled source remote sensing imagery dataset and using it to extract a feature vector from each image in the target dataset, (2) reducing the dimension of these deep features via manifold projection into a low-dimensional Euclidean space, and (3) clustering the embedded features using a Bayesian nonparametric technique to infer the number and membership of clusters simultaneously. The method takes advantage of heterogeneous transfer learning to cluster unseen data with different feature and label distributions. We demonstrate the performance of this approach outperforming state-of-the-art zero-shot classification methods on several remote sensing scene classification datasets.
Abstract:This report describes eighteen projects that explored how commercial cloud computing services can be utilized for scientific computation at national laboratories. These demonstrations ranged from deploying proprietary software in a cloud environment to leveraging established cloud-based analytics workflows for processing scientific datasets. By and large, the projects were successful and collectively they suggest that cloud computing can be a valuable computational resource for scientific computation at national laboratories.