Abstract:We present TokaMind, an open-source foundation model framework for fusion plasma modeling, based on a Multi-Modal Transformer (MMT) and trained on heterogeneous tokamak diagnostics from the publicly available MAST dataset. TokaMind supports multiple data modalities (time-series, 2D profiles, and videos) with different sampling rates, robust missing-signal handling, and efficient task adaptation via selectively loading and freezing four model components. To represent multi-modal signals, we use a training-free Discrete Cosine Transform embedding (DCT3D) and provide a clean interface for alternative embeddings (e.g., Variational Autoencoders - VAEs). We evaluate TokaMind on the recently introduced MAST benchmark TokaMark, comparing training and embedding strategies. Our results show that fine-tuned TokaMind outperforms the benchmark baseline on all but one task, and that, for several tasks, lightweight fine-tuning yields better performance than training the same architecture from scratch under a matched epoch budget. These findings highlight the benefits of multi-modal pretraining for tokamak plasma dynamics and provide a practical, extensible foundation for future fusion modeling tasks. Training code and model weights will be made publicly available.
Abstract:Development and operation of commercially viable fusion energy reactors such as tokamaks require accurate predictions of plasma dynamics from sparse, noisy, and incomplete sensors readings. The complexity of the underlying physics and the heterogeneity of experimental data pose formidable challenges for conventional numerical methods, while simultaneously highlight the promise of modern data-native AI approaches. A major obstacle in realizing this potential is, however, the lack of curated, openly available datasets and standardized benchmarks. Existing fusion datasets are scarce, fragmented across institutions, facility-specific, and inconsistently annotated, which limits reproducibility and prevents a fair and scalable comparison of AI approaches. In this paper, we introduce TokaMark, a structured benchmark to evaluate AI models on real experimental data collected from the Mega Ampere Spherical Tokamak (MAST). TokaMark provides a comprehensive suite of tools designed to (i) unify access to multi-modal heterogeneous fusion data, and (ii) harmonize formats, metadata, temporal alignment and evaluation protocols to enable consistent cross-model and cross-task comparisons. The benchmark includes a curated list of 14 tasks spanning a range of physical mechanisms, exploiting a variety of diagnostics and covering multiple operational use cases. A baseline model is provided to facilitate transparent comparison and validation within a unified framework. By establishing a unified benchmark for both the fusion and AI-for-science communities, TokaMark aims to accelerate progress in data-driven AI-based plasma modeling, contributing to the broader goal of achieving sustainable and stable fusion energy. The benchmark, documentation, and tooling will be fully open sourced upon acceptance to encourage community adoption and contribution.