Abstract:This paper describes EmoRAG, a system designed to detect perceived emotions in text for SemEval-2025 Task 11, Subtask A: Multi-label Emotion Detection. We focus on predicting the perceived emotions of the speaker from a given text snippet, labeling it with emotions such as joy, sadness, fear, anger, surprise, and disgust. Our approach does not require additional model training and only uses an ensemble of models to predict emotions. EmoRAG achieves results comparable to the best performing systems, while being more efficient, scalable, and easier to implement.
Abstract:This paper describes LIBU (LoRA enhanced influence-based unlearning), an algorithm to solve the task of unlearning - removing specific knowledge from a large language model without retraining from scratch and compromising its overall utility (SemEval-2025 Task 4: Unlearning sensitive content from Large Language Models). The algorithm combines classical \textit{influence functions} to remove the influence of the data from the model and \textit{second-order optimization} to stabilize the overall utility. Our experiments show that this lightweight approach is well applicable for unlearning LLMs in different kinds of task.
Abstract:This paper presents Papilusion, an AI-generated scientific text detector developed within the DAGPap24 shared task on detecting automatically generated scientific papers. We propose an ensemble-based approach and conduct ablation studies to analyze the effect of the detector configurations on the performance. Papilusion is ranked 6th on the leaderboard, and we improve our performance after the competition ended, achieving 99.46 (+9.63) of the F1-score on the official test set.
Abstract:This paper describes AIpom, a system designed to detect a boundary between human-written and machine-generated text (SemEval-2024 Task 8, Subtask C: Human-Machine Mixed Text Detection). We propose a two-stage pipeline combining predictions from an instruction-tuned decoder-only model and encoder-only sequence taggers. AIpom is ranked second on the leaderboard while achieving a Mean Absolute Error of 15.94. Ablation studies confirm the benefits of pipelining encoder and decoder models, particularly in terms of improved performance.