Abstract:DexFruit is a robotic manipulation framework that enables gentle, autonomous handling of fragile fruit and precise evaluation of damage. Many fruits are fragile and prone to bruising, thus requiring humans to manually harvest them with care. In this work, we demonstrate by using optical tactile sensing, autonomous manipulation of fruit with minimal damage can be achieved. We show that our tactile informed diffusion policies outperform baselines in both reduced bruising and pick-and-place success rate across three fruits: strawberries, tomatoes, and blackberries. In addition, we introduce FruitSplat, a novel technique to represent and quantify visual damage in high-resolution 3D representation via 3D Gaussian Splatting (3DGS). Existing metrics for measuring damage lack quantitative rigor or require expensive equipment. With FruitSplat, we distill a 2D strawberry mask as well as a 2D bruise segmentation mask into the 3DGS representation. Furthermore, this representation is modular and general, compatible with any relevant 2D model. Overall, we demonstrate a 92% grasping policy success rate, up to a 20% reduction in visual bruising, and up to an 31% improvement in grasp success rate on challenging fruit compared to our baselines across our three tested fruits. We rigorously evaluate this result with over 630 trials. Please checkout our website at https://dex-fruit.github.io .
Abstract:Growing global demand for food, coupled with continuing labor shortages, motivates the need for automated agricultural harvesting. While some specialty crops (e.g., apples, peaches, blueberries) can be harvested via existing harvesting modalities, fruits such as blackberries and raspberries require delicate handling to mitigate fruit damage that could significantly impact marketability. This motivates the development of soft robotic solutions that enable efficient, delicate harvesting. This paper presents the design, fabrication, and feasibility testing of a tendon-driven soft gripping system focused on blackberries, which are a fragile fruit susceptible to post-harvest damage. The gripper is both low-cost and small form factor, allowing for the integration of a micro-servo for tendon retraction, a near-infrared (NIR) based blackberry ripeness sensor utilizing the reflectance modality for identifying fully ripe blackberries, and an endoscopic camera for visual servoing with a UR-5. The gripper was used to harvest 139 berries with manual positioning in two separate field tests. Field testing found an average retention force of 2.06 N and 6.08 N for ripe and unripe blackberries, respectively. Sensor tests identified an average reflectance of 16.78 and 21.70 for ripe and unripe blackberries, respectively, indicating a clear distinction between the two ripeness levels. Finally, the soft robotic gripper was integrated onto a UR5 robot arm and successfully harvested fifteen artificial blackberries in a lab setting using visual servoing.