Abstract:Existing individual re-identification methods often struggle with the deformable nature of animal fur or skin patterns which undergo geometric distortions due to body movement and posture changes. In this paper, we propose a geometry-aware texture mapping approach that unwarps pelage patterns, the unique markings found on an animal's skin or fur, into a canonical UV space, enabling more robust feature matching. Our method uses surface normal estimation to guide the unwrapping process while preserving the geometric consistency between the 3D surface and the 2D texture space. We focus on two challenging species: Saimaa ringed seals (Pusa hispida saimensis) and leopards (Panthera pardus). Both species have distinctive yet highly deformable fur patterns. By integrating our pattern-preserving UV mapping with existing re-identification techniques, we demonstrate improved accuracy across diverse poses and viewing angles. Our framework does not require ground truth UV annotations and can be trained in a self-supervised manner. Experiments on seal and leopard datasets show up to a 5.4% improvement in re-identification accuracy.
Abstract:Recent advancements in the automatic re-identification of animal individuals from images have opened up new possibilities for studying wildlife through camera traps and citizen science projects. Existing methods leverage distinct and permanent visual body markings, such as fur patterns or scars, and typically employ one of two strategies: local features or end-to-end learning. In this study, we delve into the impact of training set size by conducting comprehensive experiments across six different methods and five animal species. While it is well known that end-to-end learning-based methods surpass local feature-based methods given a sufficient amount of good-quality training data, the challenge of gathering such datasets for wildlife animals means that local feature-based methods remain a more practical approach for many species. We demonstrate the benefits of both local feature and end-to-end learning-based approaches and show that species-specific characteristics, particularly intra-individual variance, have a notable effect on training data requirements.