Abstract:Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling by generating synthetic trajectories (called rollouts) from a learned dynamics model. However, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better preserve on-policy training but amplify model bias, indicating the need for an intermediate horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise the variance of policy gradients due to backpropagation through multiple steps, implying another intermediate horizon for stable gradient estimates. However, these two optimal horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Policy Optimization (DHMBPO), which divides the rollout procedure into a long "distribution rollout" (DR) and a short "training rollout" (TR). The DR generates on-policy state samples for mitigating distribution shift. In contrast, the short TR leverages differentiable transitions to offer accurate value gradient estimation with stable gradient updates, thereby requiring fewer updates and reducing overall runtime. We demonstrate that the double-horizon approach effectively balances distribution shift, model bias, and gradient instability, and surpasses existing MBRL methods on continuous-control benchmarks in terms of both sample efficiency and runtime.
Abstract:Recently, robust reinforcement learning (RL) methods against input observation have garnered significant attention and undergone rapid evolution due to RL's potential vulnerability. Although these advanced methods have achieved reasonable success, there have been two limitations when considering adversary in terms of long-term horizons. First, the mutual dependency between the policy and its corresponding optimal adversary limits the development of off-policy RL algorithms; although obtaining optimal adversary should depend on the current policy, this has restricted applications to off-policy RL. Second, these methods generally assume perturbations based only on the $L_p$-norm, even when prior knowledge of the perturbation distribution in the environment is available. We here introduce another perspective on adversarial RL: an f-divergence constrained problem with the prior knowledge distribution. From this, we derive two typical attacks and their corresponding robust learning frameworks. The evaluation of robustness is conducted and the results demonstrate that our proposed methods achieve excellent performance in sample-efficient off-policy RL.