Abstract:Community detection in networks is a fundamental problem in machine learning and statistical inference, with applications in social networks, biological systems, and communication networks. The stochastic block model (SBM) serves as a canonical framework for studying community structure, and exact recovery, identifying the true communities with high probability, is a central theoretical question. While classical results characterize the phase transition for exact recovery based solely on graph connectivity, many real-world networks contain additional data, such as node attributes or labels. In this work, we study exact recovery in the Data Block Model (DBM), an SBM augmented with node-associated data, as formalized by Asadi, Abbe, and Verdú (2017). We introduce the Chernoff--TV divergence and use it to characterize a sharp exact recovery threshold for the DBM. We further provide an efficient algorithm that achieves this threshold, along with a matching converse result showing impossibility below the threshold. Finally, simulations validate our findings and demonstrate the benefits of incorporating vertex data as side information in community detection.
Abstract:The explosion of data available in life sciences is fueling an increasing demand for expressive models and computational methods. Graph transformation is a model for dynamic systems with a large variety of applications. We introduce a novel method of the graph transformation model construction, combining generative and dynamical viewpoints to give a fully automated data-driven model inference method. The method takes the input dynamical properties, given as a "snapshot" of the dynamics encoded by explicit transitions, and constructs a compatible model. The obtained model is guaranteed to be minimal, thus framing the approach as model compression (from a set of transitions into a set of rules). The compression is permissive to a lossy case, where the constructed model is allowed to exhibit behavior outside of the input transitions, thus suggesting a completion of the input dynamics. The task of graph transformation model inference is naturally highly challenging due to the combinatorics involved. We tackle the exponential explosion by proposing a heuristically minimal translation of the task into a well-established problem, set cover, for which highly optimized solutions exist. We further showcase how our results relate to Kolmogorov complexity expressed in terms of graph transformation.