TU Vienna
Abstract:We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs), targeting their transformation into formal representations in Defeasible Deontic Logic (DDL). We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. Our methodology is evaluated across various LLM configurations, including prompt engineering strategies, fine-tuned models, and multi-stage pipelines, focusing on legal norms from the Australian Telecommunications Consumer Protections Code. Empirical results demonstrate promising alignment between machine-generated and expert-crafted formalizations, showing that LLMs - particularly when prompted effectively - can significantly contribute to scalable legal informatics.
Abstract:The rise of powerful AI technology for a range of applications that are sensitive to legal, social, and ethical norms demands decision-making support in presence of norms and regulations. Normative reasoning is the realm of deontic logics, that are challenged by well-known benchmark problems (deontic paradoxes), and lack efficient computational tools. In this paper, we use Answer Set Programming (ASP) for addressing these shortcomings and showcase how to encode and resolve several well-known deontic paradoxes utilizing weak constraints. By abstracting and generalizing this encoding, we present a methodology for translating normative systems in ASP with weak constraints. This methodology is applied to "ethical" versions of Pac-man, where we obtain a comparable performance with related works, but ethically preferable results.