Abstract:Games are one of the safest source of realizing self-esteem and relaxation at the same time. An online gaming platform typically has massive data coming in, e.g., in-game actions, player moves, clickstreams, transactions etc. It is rather interesting, as something as simple as data on gaming moves can help create a psychological imprint of the user at that moment, based on her impulsive reactions and response to a situation in the game. Mining this knowledge can: (a) immediately help better explain observed and predicted player behavior; and (b) consequently propel deeper understanding towards players' experience, growth and protection. To this effect, we focus on discovery of the "game behaviours" as micro-patterns formed by continuous sequence of games and the persistent "play styles" of the players' as a sequence of such sequences on an online skill gaming platform for Rummy. We propose a two stage deep neural network, CognitionNet. The first stage focuses on mining game behaviours as cluster representations in a latent space while the second aggregates over these micro patterns to discover play styles via a supervised classification objective around player engagement. The dual objective allows CognitionNet to reveal several player psychology inspired decision making and tactics. To our knowledge, this is the first and one-of-its-kind research to fully automate the discovery of: (i) player psychology and game tactics from telemetry data; and (ii) relevant diagnostic explanations to players' engagement predictions. The collaborative training of the two networks with differential input dimensions is enabled using a novel formulation of "bridge loss". The network plays pivotal role in obtaining homogeneous and consistent play style definitions and significantly outperforms the SOTA baselines wherever applicable.
Abstract:Recent advancements in state-of-the-art (SOTA) offline reinforcement learning (RL) have primarily focused on addressing function approximation errors, which contribute to the overestimation of Q-values for out-of-distribution actions, a challenge that static datasets exacerbate. However, high stakes applications such as recommendation systems in online gaming, introduce further complexities due to player's psychology (intent) driven by gameplay experiences and the inherent volatility on the platform. These factors create highly sparse, partially overlapping state spaces across policies, further influenced by the experiment path selection logic which biases state spaces towards specific policies. Current SOTA methods constrain learning from such offline data by clipping known counterfactual actions as out-of-distribution due to poor generalization across unobserved states. Further aggravating conservative Q-learning and necessitating more online exploration. FAST-Q introduces a novel approach that (1) leverages Gradient Reversal Learning to construct balanced state representations, regularizing the policy-specific bias between the player's state and action thereby enabling counterfactual estimation; (2) supports offline counterfactual exploration in parallel with static data exploitation; and (3) proposes a Q-value decomposition strategy for multi-objective optimization, facilitating explainable recommendations over short and long-term objectives. These innovations demonstrate superiority of FAST-Q over prior SOTA approaches and demonstrates at least 0.15 percent increase in player returns, 2 percent improvement in lifetime value (LTV), 0.4 percent enhancement in the recommendation driven engagement, 2 percent improvement in the player's platform dwell time and an impressive 10 percent reduction in the costs associated with the recommendation, on our volatile gaming platform.