Abstract:High-resolution soil moisture (SM) observations are critical for agricultural monitoring, forestry management, and hazard prediction, yet current satellite passive microwave missions cannot directly provide retrievals at tens-of-meter spatial scales. Unmanned aerial vehicle (UAV) mounted microwave radiometry presents a promising alternative, but most evaluations to date have focused on agricultural settings, with limited exploration across other land covers and few efforts to quantify retrieval uncertainty. This study addresses both gaps by evaluating SM retrievals from a drone-based Portable L-band Radiometer (PoLRa) across shrubland, bare soil, and forest strips in Central Illinois, U.S., using a 10-day field campaign in 2024. Controlled UAV flights at altitudes of 10 m, 20 m, and 30 m were performed to generate brightness temperatures (TB) at spatial resolutions of 7 m, 14 m, and 21 m. SM retrievals were carried out using multiple tau-omega-based algorithms, including the single channel algorithm (SCA), dual channel algorithm (DCA), and multi-temporal dual channel algorithm (MTDCA). A Bayesian inference framework was then applied to provide probabilistic uncertainty characterization for both SM and vegetation optical depth (VOD). Results show that the gridded TB distributions consistently capture dry-wet gradients associated with vegetation density variations, and spatial correlations between polarized observations are largely maintained across scales. Validation against in situ measurements indicates that PoLRa derived SM retrievals from the SCAV and MTDCA algorithms achieve unbiased root-mean-square errors (ubRMSE) generally below 0.04 m3/m3 across different land covers. Bayesian posterior analyses confirm that reference SM values largely fall within the derived uncertainty intervals, with mean uncertainty ranges around 0.02 m3/m3 and 0.11 m3/m3 for SCA and DCA related retrievals.