Abstract:This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
Abstract:Powered by new advances in sensor development and artificial intelligence, the decreasing cost of computation, and the pervasiveness of handheld computation devices, biometric user authentication (and identification) is rapidly becoming ubiquitous. Modern approaches to biometric authentication, based on sophisticated machine learning techniques, cannot avoid storing either trained-classifier details or explicit user biometric data, thus exposing users' credentials to falsification. In this paper, we introduce a secure way to handle user-specific information involved with the use of vector-space classifiers or artificial neural networks for biometric authentication. Our proposed architecture, called a Neural Fuzzy Extractor (NFE), allows the coupling of pre-existing classifiers with fuzzy extractors, through a artificial-neural-network-based buffer called an expander, with minimal or no performance degradation. The NFE thus offers all the performance advantages of modern deep-learning-based classifiers, and all the security of standard fuzzy extractors. We demonstrate the NFE retrofit to a classic artificial neural network for a simple scenario of fingerprint-based user authentication.