Abstract:Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
Abstract:Chest X-rays (X-ray images) have been proven to be effective for the diagnosis of chest diseases, including Pneumonia, Lung Opacity, and COVID-19. However, relying on traditional medical methods for diagnosis from X-ray images is prone to delays and inaccuracies because the medical personnel who evaluate the X-ray images may have preconceived biases. For this reason, researchers have proposed the use of deep learning-based techniques to facilitate the diagnosis process. The preeminent method is the use of sophisticated Convolutional Neural Networks (CNNs). In this paper, we propose a novel detection model named \textbf{AttCDCNet} for the task of X-ray image diagnosis, enhancing the popular DenseNet121 model by adding an attention block to help the model focus on the most relevant regions, using focal loss as a loss function to overcome the imbalance of the dataset problem, and utilizing depth-wise convolution to reduce the parameters to make the model lighter. Through extensive experimental evaluations, the proposed model demonstrates exceptional performance, showing better results than the original DenseNet121. The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography Dataset.
Abstract:To detect UAVs in real-time, computer vision and deep learning approaches are developing areas of research. There have been concerns raised regarding the possible hazards and misuse of employing unmanned aerial vehicles (UAVs) in many applications. These include potential privacy violations, safety-related issues, and security threats. Vision-based detection systems often comprise a combination of hardware components such as cameras and software components. In this work, the performance of recent and popular vision-based object detection techniques is investigated for the task of UAV detection under challenging conditions such as complex backgrounds, varying UAV sizes, complex background scenarios, and low-to-heavy rainy conditions. To study the performance of selected methods under these conditions, two datasets were curated: one with a sky background and one with complex background. In this paper, one-stage detectors and two-stage detectors are studied and evaluated. The findings presented in the paper shall help provide insights concerning the performance of the selected models for the task of UAV detection under challenging conditions and pave the way to develop more robust UAV detection methods