



Abstract:We formalize a simple but natural subclass of service domains for relational planning problems with object-centered, independent exogenous events and additive rewards capturing, for example, problems in inventory control. Focusing on this subclass, we present a new symbolic planning algorithm which is the first algorithm that has explicit performance guarantees for relational MDPs with exogenous events. In particular, under some technical conditions, our planning algorithm provides a monotonic lower bound on the optimal value function. To support this algorithm we present novel evaluation and reduction techniques for generalized first order decision diagrams, a knowledge representation for real-valued functions over relational world states. Our planning algorithm uses a set of focus states, which serves as a training set, to simplify and approximate the symbolic solution, and can thus be seen to perform learning for planning. A preliminary experimental evaluation demonstrates the validity of our approach.


Abstract:We study an approach to policy selection for large relational Markov Decision Processes (MDPs). We consider a variant of approximate policy iteration (API) that replaces the usual value-function learning step with a learning step in policy space. This is advantageous in domains where good policies are easier to represent and learn than the corresponding value functions, which is often the case for the relational MDPs we are interested in. In order to apply API to such problems, we introduce a relational policy language and corresponding learner. In addition, we introduce a new bootstrapping routine for goal-based planning domains, based on random walks. Such bootstrapping is necessary for many large relational MDPs, where reward is extremely sparse, as API is ineffective in such domains when initialized with an uninformed policy. Our experiments show that the resulting system is able to find good policies for a number of classical planning domains and their stochastic variants by solving them as extremely large relational MDPs. The experiments also point to some limitations of our approach, suggesting future work.




Abstract:We develop, analyze, and evaluate a novel, supervised, specific-to-general learner for a simple temporal logic and use the resulting algorithm to learn visual event definitions from video sequences. First, we introduce a simple, propositional, temporal, event-description language called AMA that is sufficiently expressive to represent many events yet sufficiently restrictive to support learning. We then give algorithms, along with lower and upper complexity bounds, for the subsumption and generalization problems for AMA formulas. We present a positive-examples--only specific-to-general learning method based on these algorithms. We also present a polynomial-time--computable ``syntactic'' subsumption test that implies semantic subsumption without being equivalent to it. A generalization algorithm based on syntactic subsumption can be used in place of semantic generalization to improve the asymptotic complexity of the resulting learning algorithm. Finally, we apply this algorithm to the task of learning relational event definitions from video and show that it yields definitions that are competitive with hand-coded ones.