Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
We introduce Arctic-ABSA, a collection of powerful models for real-life aspect-based sentiment analysis (ABSA). Our models are tailored to commercial needs, trained on a large corpus of public data alongside carefully generated synthetic data, resulting in a dataset 20 times larger than SemEval14. We extend typical ABSA models by expanding the number of sentiment classes from the standard three (positive, negative, neutral) to five, adding mixed and unknown classes, while also jointly predicting overall text sentiment and supporting multiple languages. We experiment with reasoning injection by fine-tuning on Chain-of-Thought (CoT) examples and introduce a novel reasoning pretraining technique for encoder-only models that significantly improves downstream fine-tuning and generalization. Our 395M-parameter encoder and 8B-parameter decoder achieve up to 10 percentage points higher accuracy than GPT-4o and Claude 3.5 Sonnet, while setting new state-of-the-art results on the SemEval14 benchmark. A single multilingual model maintains 87-91% accuracy across six languages without degrading English performance. We release ABSA-mix, a large-scale benchmark aggregating 17 public ABSA datasets across 92 domains.
Sentiment analysis focuses on identifying the emotional polarity expressed in textual data, typically categorized as positive, negative, or neutral. Hate speech detection, on the other hand, aims to recognize content that incites violence, discrimination, or hostility toward individuals or groups based on attributes such as race, gender, sexual orientation, or religion. Both tasks play a critical role in online content moderation by enabling the detection and mitigation of harmful or offensive material, thereby contributing to safer digital environments. In this study, we examine the performance of three transformer-based models: BERT-base-multilingual-cased, RoBERTa-base, and XLM-RoBERTa-base with the first eight layers frozen, for multilingual sentiment analysis and hate speech detection. The evaluation is conducted across five languages: English, Korean, Japanese, Chinese, and French. The models are compared using standard performance metrics, including accuracy, precision, recall, and F1-score. To enhance model interpretability and provide deeper insight into prediction behavior, we integrate the Local Interpretable Model-agnostic Explanations (LIME) framework, which highlights the contribution of individual words to the models decisions. By combining state-of-the-art transformer architectures with explainability techniques, this work aims to improve both the effectiveness and transparency of multilingual sentiment analysis and hate speech detection systems.
The widespread adoption of automatic sentiment and emotion classifiers makes it important to ensure that these tools perform reliably across different populations. Yet their reliability is typically assessed using benchmarks that rely on third-party annotators rather than the individuals experiencing the emotions themselves, potentially concealing systematic biases. In this paper, we use a unique, large-scale dataset of more than one million self-annotated posts and a pre-registered research design to investigate gender biases in emotion detection across 414 combinations of models and emotion-related classes. We find that across different types of automatic classifiers and various underlying emotions, error rates are consistently higher for texts authored by men compared to those authored by women. We quantify how this bias could affect results in downstream applications and show that current machine learning tools, including large language models, should be applied with caution when the gender composition of a sample is not known or variable. Our findings demonstrate that sentiment analysis is not yet a solved problem, especially in ensuring equitable model behaviour across demographic groups.
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
This paper introduces an algorithmic framework for conducting systematic literature reviews (SLRs), designed to improve efficiency, reproducibility, and selection quality assessment in the literature review process. The proposed method integrates Natural Language Processing (NLP) techniques, clustering algorithms, and interpretability tools to automate and structure the selection and analysis of academic publications. The framework is applied to a case study focused on financial narratives, an emerging area in financial economics that examines how structured accounts of economic events, formed by the convergence of individual interpretations, influence market dynamics and asset prices. Drawing from the Scopus database of peer-reviewed literature, the review highlights research efforts to model financial narratives using various NLP techniques. Results reveal that while advances have been made, the conceptualization of financial narratives remains fragmented, often reduced to sentiment analysis, topic modeling, or their combination, without a unified theoretical framework. The findings underscore the value of more rigorous and dynamic narrative modeling approaches and demonstrate the effectiveness of the proposed algorithmic SLR methodology.
Anxiety affects hundreds of millions of individuals globally, yet large-scale screening remains limited. Social media language provides an opportunity for scalable detection, but current models often lack interpretability, keyword-robustness validation, and rigorous user-level data integrity. This work presents a transparent approach to social media-based anxiety detection through linguistically interpretable feature-grounded modeling and cross-domain validation. Using a substantial dataset of Reddit posts, we trained a logistic regression classifier on carefully curated subreddits for training, validation, and test splits. Comprehensive evaluation included feature ablation, keyword masking experiments, and varying-density difference analyses comparing anxious and control groups, along with external validation using clinically interviewed participants with diagnosed anxiety disorders. The model achieved strong performance while maintaining high accuracy even after sentiment removal or keyword masking. Early detection using minimal post history significantly outperformed random classification, and cross-domain analysis demonstrated strong consistency with clinical interview data. Results indicate that transparent linguistic features can support reliable, generalizable, and keyword-robust anxiety detection. The proposed framework provides a reproducible baseline for interpretable mental health screening across diverse online contexts.
Multimodal sentiment analysis is a key technology in the fields of human-computer interaction and affective computing. Accurately recognizing human emotional states is crucial for facilitating smooth communication between humans and machines. Despite some progress in multimodal sentiment analysis research, numerous challenges remain. The first challenge is the limited and insufficiently rich features extracted from single modality data. Secondly, most studies focus only on the consistency of inter-modal feature information, neglecting the differences between features, resulting in inadequate feature information fusion. In this paper, we first extract multi-channel features to obtain more comprehensive feature information. We employ dual-channel features in both the visual and auditory modalities to enhance intra-modal feature representation. Secondly, we propose a symmetric mutual promotion (SMP) inter-modal feature fusion method. This method combines symmetric cross-modal attention mechanisms and self-attention mechanisms, where the cross-modal attention mechanism captures useful information from other modalities, and the self-attention mechanism models contextual information. This approach promotes the exchange of useful information between modalities, thereby strengthening inter-modal interactions. Furthermore, we integrate intra-modal features and inter-modal fused features, fully leveraging the complementarity of inter-modal feature information while considering feature information differences. Experiments conducted on two benchmark datasets demonstrate the effectiveness and superiority of our proposed method.
Option pricing in real markets faces fundamental challenges. The Black--Scholes--Merton (BSM) model assumes constant volatility and uses a linear generator $g(t,x,y,z)=-ry$, while lacking explicit behavioral factors, resulting in systematic departures from observed dynamics. This paper extends the BSM model by learning a nonlinear generator within a deep Forward--Backward Stochastic Differential Equation (FBSDE) framework. We propose a dual-network architecture where the value network $u_θ$ learns option prices and the generator network $g_φ$ characterizes the pricing mechanism, with the hedging strategy $Z_t=σ_t X_t \nabla_x u_θ$ obtained via automatic differentiation. The framework adopts forward recursion from a learnable initial condition $Y_0=u_θ(0,\cdot)$, naturally accommodating volatility trajectory and sentiment features. Empirical results on CSI 300 index options show that our method reduces Mean Absolute Error (MAE) by 32.2\% and Mean Absolute Percentage Error (MAPE) by 35.3\% compared with BSM. Interpretability analysis indicates that architectural improvements are effective across all option types, while the information advantage is asymmetric between calls and puts. Specifically, call option improvements are primarily driven by sentiment features, whereas put options show more balanced contributions from volatility trajectory and sentiment features. This finding aligns with economic intuition regarding option pricing mechanisms.
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.