Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.


This proposed tutorial focuses on Healthcare Domain Applications of NLP, what we have achieved around HealthcareNLP, and the challenges that lie ahead for the future. Existing reviews in this domain either overlook some important tasks, such as synthetic data generation for addressing privacy concerns, or explainable clinical NLP for improved integration and implementation, or fail to mention important methodologies, including retrieval augmented generation and the neural symbolic integration of LLMs and KGs. In light of this, the goal of this tutorial is to provide an introductory overview of the most important sub-areas of a patient- and resource-oriented HealthcareNLP, with three layers of hierarchy: data/resource layer: annotation guidelines, ethical approvals, governance, synthetic data; NLP-Eval layer: NLP tasks such as NER, RE, sentiment analysis, and linking/coding with categorised methods, leading to explainable HealthAI; patients layer: Patient Public Involvement and Engagement (PPIE), health literacy, translation, simplification, and summarisation (also NLP tasks), and shared decision-making support. A hands-on session will be included in the tutorial for the audience to use HealthcareNLP applications. The target audience includes NLP practitioners in the healthcare application domain, NLP researchers who are interested in domain applications, healthcare researchers, and students from NLP fields. The type of tutorial is "Introductory to CL/NLP topics (HealthcareNLP)" and the audience does not need prior knowledge to attend this. Tutorial materials: https://github.com/4dpicture/HealthNLP
The rapid adoption of large language models in financial services necessitates rigorous evaluation frameworks to assess their performance, efficiency, and practical applicability. This paper conducts a comprehensive evaluation of the GPT-OSS model family alongside contemporary LLMs across ten diverse financial NLP tasks. Through extensive experimentation on 120B and 20B parameter variants of GPT-OSS, we reveal a counterintuitive finding: the smaller GPT-OSS-20B model achieves comparable accuracy (65.1% vs 66.5%) while demonstrating superior computational efficiency with 198.4 Token Efficiency Score and 159.80 tokens per second processing speed [1]. Our evaluation encompasses sentiment analysis, question answering, and entity recognition tasks using real-world financial datasets including Financial PhraseBank, FiQA-SA, and FLARE FINERORD. We introduce novel efficiency metrics that capture the trade-off between model performance and resource utilization, providing critical insights for deployment decisions in production environments. The benchmark reveals that GPT-OSS models consistently outperform larger competitors including Qwen3-235B, challenging the prevailing assumption that model scale directly correlates with task performance [2]. Our findings demonstrate that architectural innovations and training strategies in GPT-OSS enable smaller models to achieve competitive performance with significantly reduced computational overhead, offering a pathway toward sustainable and cost-effective deployment of LLMs in financial applications.
This paper asks whether promotional Twitter/X bots form behavioural families and whether members evolve similarly. We analyse 2,798,672 tweets from 2,615 ground-truth promotional bot accounts (2006-2021), focusing on complete years 2009 to 2020. Each bot is encoded as a sequence of symbolic blocks (``digital DNA'') from seven categorical post-level behavioural features (posting action, URL, media, text duplication, hashtags, emojis, sentiment), preserving temporal order only. Using non-overlapping blocks (k=7), cosine similarity over block-frequency vectors, and hierarchical clustering, we obtain four coherent families: Unique Tweeters, Duplicators with URLs, Content Multipliers, and Informed Contributors. Families share behavioural cores but differ systematically in engagement strategies and life-cycle dynamics (beginning/middle/end). We then model behavioural change as mutations. Within each family we align sequences via multiple sequence alignment (MSA) and label events as insertions, deletions, substitutions, alterations, and identity. This quantifies mutation rates, change-prone blocks/features, and mutation hotspots. Deletions and substitutions dominate, insertions are rare, and mutation profiles differ by family, with hotspots early for some families and dispersed for others. Finally, we test predictive value: bots within the same family share mutations more often than bots across families; closer bots share and propagate mutations more than distant ones; and responses to external triggers (e.g., Christmas, Halloween) follow family-specific, partly predictable patterns. Overall, sequence-based family modelling plus mutation analysis provides a fine-grained account of how promotional bot behaviour adapts over time.
This paper introduces PolyPersona, a generative framework for synthesizing persona-conditioned survey responses across multiple domains. The framework instruction-tunes compact chat models using parameter-efficient LoRA adapters with 4-bit quantization under a resource-adaptive training setup. A dialogue-based data pipeline explicitly preserves persona cues, ensuring consistent behavioral alignment across generated responses. Using this pipeline, we construct a dataset of 3,568 synthetic survey responses spanning ten domains and 433 distinct personas, enabling controlled instruction tuning and systematic multi-domain evaluation. We evaluate the generated responses using a multi-metric evaluation suite that combines standard text generation metrics, including BLEU, ROUGE, and BERTScore, with survey-specific metrics designed to assess structural coherence, stylistic consistency, and sentiment alignment.Experimental results show that compact models such as TinyLlama 1.1B and Phi-2 achieve performance comparable to larger 7B to 8B baselines, with a highest BLEU score of 0.090 and ROUGE-1 of 0.429. These findings demonstrate that persona-conditioned fine-tuning enables small language models to generate reliable and coherent synthetic survey data. The proposed framework provides an efficient and reproducible approach for survey data generation, supporting scalable evaluation while facilitating bias analysis through transparent and open protocols.
In the face of increasing financial uncertainty and market complexity, this study presents a novel risk-aware financial forecasting framework that integrates advanced machine learning techniques with intuitionistic fuzzy multi-criteria decision-making (MCDM). Tailored to the BIST 100 index and validated through a case study of a major defense company in Türkiye, the framework fuses structured financial data, unstructured text data, and macroeconomic indicators to enhance predictive accuracy and robustness. It incorporates a hybrid suite of models, including extreme gradient boosting (XGBoost), long short-term memory (LSTM) network, graph neural network (GNN), to deliver probabilistic forecasts with quantified uncertainty. The empirical results demonstrate high forecasting accuracy, with a net profit mean absolute percentage error (MAPE) of 3.03% and narrow 95% confidence intervals for key financial indicators. The risk-aware analysis indicates a favorable risk-return profile, with a Sharpe ratio of 1.25 and a higher Sortino ratio of 1.80, suggesting relatively low downside volatility and robust performance under market fluctuations. Sensitivity analysis shows that the key financial indicator predictions are highly sensitive to variations of inflation, interest rates, sentiment, and exchange rates. Additionally, using an intuitionistic fuzzy MCDM approach, combining entropy weighting, evaluation based on distance from the average solution (EDAS), and the measurement of alternatives and ranking according to compromise solution (MARCOS) methods, the tabular data learning network (TabNet) outperforms the other models and is identified as the most suitable candidate for deployment. Overall, the findings of this work highlight the importance of integrating advanced machine learning, risk quantification, and fuzzy MCDM methodologies in financial forecasting, particularly in emerging markets.
Social media serves as a critical medium in modern politics because it both reflects politicians' ideologies and facilitates communication with younger generations. We present MultiParTweet, a multilingual tweet corpus from X that connects politicians' social media discourse with German political corpus GerParCor, thereby enabling comparative analyses between online communication and parliamentary debates. MultiParTweet contains 39 546 tweets, including 19 056 media items. Furthermore, we enriched the annotation with nine text-based models and one vision-language model (VLM) to annotate MultiParTweet with emotion, sentiment, and topic annotations. Moreover, the automated annotations are evaluated against a manually annotated subset. MultiParTweet can be reconstructed using our tool, TTLABTweetCrawler, which provides a framework for collecting data from X. To demonstrate a methodological demonstration, we examine whether the models can predict each other using the outputs of the remaining models. In summary, we provide MultiParTweet, a resource integrating automatic text and media-based annotations validated with human annotations, and TTLABTweetCrawler, a general-purpose X data collection tool. Our analysis shows that the models are mutually predictable. In addition, VLM-based annotation were preferred by human annotators, suggesting that multimodal representations align more with human interpretation.
Sentiment analysis of Arabic dialects presents significant challenges due to linguistic diversity and the scarcity of annotated data. This paper describes our approach to the AHaSIS shared task, which focuses on sentiment analysis on Arabic dialects in the hospitality domain. The dataset comprises hotel reviews written in Moroccan and Saudi dialects, and the objective is to classify the reviewers sentiment as positive, negative, or neutral. We employed the SetFit (Sentence Transformer Fine-tuning) framework, a data-efficient few-shot learning technique. On the official evaluation set, our system achieved an F1 of 73%, ranking 12th among 26 participants. This work highlights the potential of few-shot learning to address data scarcity in processing nuanced dialectal Arabic text within specialized domains like hotel reviews.
The hospitality industry in the Arab world increasingly relies on customer feedback to shape services, driving the need for advanced Arabic sentiment analysis tools. To address this challenge, the Sentiment Analysis on Arabic Dialects in the Hospitality Domain shared task focuses on Sentiment Detection in Arabic Dialects. This task leverages a multi-dialect, manually curated dataset derived from hotel reviews originally written in Modern Standard Arabic (MSA) and translated into Saudi and Moroccan (Darija) dialects. The dataset consists of 538 sentiment-balanced reviews spanning positive, neutral, and negative categories. Translations were validated by native speakers to ensure dialectal accuracy and sentiment preservation. This resource supports the development of dialect-aware NLP systems for real-world applications in customer experience analysis. More than 40 teams have registered for the shared task, with 12 submitting systems during the evaluation phase. The top-performing system achieved an F1 score of 0.81, demonstrating the feasibility and ongoing challenges of sentiment analysis across Arabic dialects.




Aspect-Based Sentiment Analysis (ABSA) predicts sentiment polarity for specific aspect terms, a task made difficult by conflicting sentiments across aspects and the sparse context of short texts. Prior graph-based approaches model only pairwise dependencies, forcing them to construct multiple graphs for different relational views. These introduce redundancy, parameter overhead, and error propagation during fusion, limiting robustness in short-text, low-resource settings. We present HyperABSA, a dynamic hypergraph framework that induces aspect-opinion structures through sample-specific hierarchical clustering. To construct these hyperedges, we introduce a novel acceleration-fallback cutoff for hierarchical clustering, which adaptively determines the level of granularity. Experiments on three benchmarks (Lap14, Rest14, MAMS) show consistent improvements over strong graph baselines, with substantial gains when paired with RoBERTa backbones. These results position dynamic hypergraph construction as an efficient, powerful alternative for ABSA, with potential extensions to other short-text NLP tasks.
Understanding sentiment in financial documents is crucial for gaining insights into market behavior. These reports often contain obfuscated language designed to present a positive or neutral outlook, even when underlying conditions may be less favorable. This paper presents a novel approach using Aspect-Based Sentiment Analysis (ABSA) to decode obfuscated sentiment in Thai financial annual reports. We develop specific guidelines for annotating obfuscated sentiment in these texts and annotate more than one hundred financial reports. We then benchmark various text classification models on this annotated dataset, demonstrating strong performance in sentiment classification. Additionally, we conduct an event study to evaluate the real-world implications of our sentiment analysis on stock prices. Our results suggest that market reactions are selectively influenced by specific aspects within the reports. Our findings underscore the complexity of sentiment analysis in financial texts and highlight the importance of addressing obfuscated language to accurately assess market sentiment.