Debt collection is a critical function within the banking, financial services, and insurance (BFSI) sector, relying heavily on large-scale human-to-human conversational interactions conducted primarily in Vietnamese contact centers. These conversations involve informal spoken language, emotional variability, and complex domain-specific reasoning, which pose significant challenges for traditional natural language processing systems. This paper introduces Credit C-GPT, a domain-specialized large language model with seven billion parameters, fine-tuned for conversational understanding in Vietnamese debt collection scenarios. The proposed model integrates multiple conversational intelligence tasks, including dialogue understanding, sentiment recognition, intent detection, call stage classification, and structured slot-value extraction, within a single reasoning-based framework. We describe the data construction process, annotation strategy, and training methodology, and evaluate the model on proprietary human-annotated datasets. Experimental results show consistent improvements over traditional pipeline-based approaches, indicating that domain-specialized conversational language models provide a scalable and privacy-aware solution for real-time assistance and post-call analytics in enterprise contact centers.
The reliability of large language models (LLMs) in production environments remains significantly constrained by their propensity to generate hallucinations--fluent, plausible-sounding outputs that contradict or fabricate information. While hallucination detection has recently emerged as a priority in English-centric benchmarks, low-to-medium resource languages such as Vietnamese remain inadequately covered by standardized evaluation frameworks. This paper introduces the DSC2025 ViHallu Challenge, the first large-scale shared task for detecting hallucinations in Vietnamese LLMs. We present the ViHallu dataset, comprising 10,000 annotated triplets of (context, prompt, response) samples systematically partitioned into three hallucination categories: no hallucination, intrinsic, and extrinsic hallucinations. The dataset incorporates three prompt types--factual, noisy, and adversarial--to stress-test model robustness. A total of 111 teams participated, with the best-performing system achieving a macro-F1 score of 84.80\%, compared to a baseline encoder-only score of 32.83\%, demonstrating that instruction-tuned LLMs with structured prompting and ensemble strategies substantially outperform generic architectures. However, the gap to perfect performance indicates that hallucination detection remains a challenging problem, particularly for intrinsic (contradiction-based) hallucinations. This work establishes a rigorous benchmark and explores a diverse range of detection methodologies, providing a foundation for future research into the trustworthiness and reliability of Vietnamese language AI systems.
Large Language Models (LLMs) have demonstrated remarkable proficiency in general medical domains. However, their performance significantly degrades in specialized, culturally specific domains such as Vietnamese Traditional Medicine (VTM), primarily due to the scarcity of high-quality, structured benchmarks. In this paper, we introduce VietMed-MCQ, a novel multiple-choice question dataset generated via a Retrieval-Augmented Generation (RAG) pipeline with an automated consistency check mechanism. Unlike previous synthetic datasets, our framework incorporates a dual-model validation approach to ensure reasoning consistency through independent answer verification, though the substring-based evidence checking has known limitations. The complete dataset of 3,190 questions spans three difficulty levels and underwent validation by one medical expert and four students, achieving 94.2 percent approval with substantial inter-rater agreement (Fleiss' kappa = 0.82). We benchmark seven open-source models on VietMed-MCQ. Results reveal that general-purpose models with strong Chinese priors outperform Vietnamese-centric models, highlighting cross-lingual conceptual transfer, while all models still struggle with complex diagnostic reasoning. Our code and dataset are publicly available to foster research in low-resource medical domains.
Sign language translation systems typically require English as an intermediary language, creating barriers for non-English speakers in the global deaf community. We present Canonical Semantic Form (CSF), a language-agnostic semantic representation framework that enables direct translation from any source language to sign language without English mediation. CSF decomposes utterances into nine universal semantic slots: event, intent, time, condition, agent, object, location, purpose, and modifier. A key contribution is our comprehensive condition taxonomy comprising 35 condition types across eight semantic categories, enabling nuanced representation of conditional expressions common in everyday communication. We train a lightweight transformer-based extractor (0.74 MB) that achieves 99.03% average slot extraction accuracy across four typologically diverse languages: English, Vietnamese, Japanese, and French. The model demonstrates particularly strong performance on condition classification (99.4% accuracy) despite the 35-class complexity. With inference latency of 3.02ms on CPU, our approach enables real-time sign language generation in browser-based applications. We release our code, trained models, and multilingual dataset to support further research in accessible sign language technology.
Understanding signboard text in natural scenes is essential for real-world applications of Visual Question Answering (VQA), yet remains underexplored, particularly in low-resource languages. We introduce ViSignVQA, the first large-scale Vietnamese dataset designed for signboard-oriented VQA, which comprises 10,762 images and 25,573 question-answer pairs. The dataset captures the diverse linguistic, cultural, and visual characteristics of Vietnamese signboards, including bilingual text, informal phrasing, and visual elements such as color and layout. To benchmark this task, we adapted state-of-the-art VQA models (e.g., BLIP-2, LaTr, PreSTU, and SaL) by integrating a Vietnamese OCR model (SwinTextSpotter) and a Vietnamese pretrained language model (ViT5). The experimental results highlight the significant role of the OCR-enhanced context, with F1-score improvements of up to 209% when the OCR text is appended to questions. Additionally, we propose a multi-agent VQA framework combining perception and reasoning agents with GPT-4, achieving 75.98% accuracy via majority voting. Our study presents the first large-scale multimodal dataset for Vietnamese signboard understanding. This underscores the importance of domain-specific resources in enhancing text-based VQA for low-resource languages. ViSignVQA serves as a benchmark capturing real-world scene text characteristics and supporting the development and evaluation of OCR-integrated VQA models in Vietnamese.




Generative Artificial Intelligence (AI) has created unprecedented opportunities for creative expression, education, and research. Text-to-image systems such as DALL.E, Stable Diffusion, and Midjourney can now convert ideas into visuals within seconds, but they also present a dual-use dilemma, raising critical ethical concerns: amplifying societal biases, producing high-fidelity disinformation, and violating intellectual property. This paper introduces SafeGen, a framework that embeds ethical safeguards directly into the text-to-image generation pipeline, grounding its design in established principles for Trustworthy AI. SafeGen integrates two complementary components: BGE-M3, a fine-tuned text classifier that filters harmful or misleading prompts, and Hyper-SD, an optimized diffusion model that produces high fidelity, semantically aligned images. Built on a curated multilingual (English- Vietnamese) dataset and a fairness-aware training process, SafeGen demonstrates that creative freedom and ethical responsibility can be reconciled within a single workflow. Quantitative evaluations confirm its effectiveness, with Hyper-SD achieving IS = 3.52, FID = 22.08, and SSIM = 0.79, while BGE-M3 reaches an F1-Score of 0.81. An ablation study further validates the importance of domain-specific fine-tuning for both modules. Case studies illustrate SafeGen's practical impact in blocking unsafe prompts, generating inclusive teaching materials, and reinforcing academic integrity.
Recent advances in contextualized word embeddings have greatly improved semantic tasks such as Word Sense Disambiguation (WSD) and contextual similarity, but most progress has been limited to high-resource languages like English. Vietnamese, in contrast, still lacks robust models and evaluation resources for fine-grained semantic understanding. In this paper, we present ViConBERT, a novel framework for learning Vietnamese contextualized embeddings that integrates contrastive learning (SimCLR) and gloss-based distillation to better capture word meaning. We also introduce ViConWSD, the first large-scale synthetic dataset for evaluating semantic understanding in Vietnamese, covering both WSD and contextual similarity. Experimental results show that ViConBERT outperforms strong baselines on WSD (F1 = 0.87) and achieves competitive performance on ViCon (AP = 0.88) and ViSim-400 (Spearman's rho = 0.60), demonstrating its effectiveness in modeling both discrete senses and graded semantic relations. Our code, models, and data are available at https://github.com/tkhangg0910/ViConBERT




Contemporary Visual Question Answering (VQA) systems remain constrained when confronted with culturally specific content, largely because cultural knowledge is under-represented in training corpora and the reasoning process is not rendered interpretable to end users. This paper introduces VietMEAgent, a multimodal explainable framework engineered for Vietnamese cultural understanding. The method integrates a cultural object detection backbone with a structured program generation layer, yielding a pipeline in which answer prediction and explanation are tightly coupled. A curated knowledge base of Vietnamese cultural entities serves as an explicit source of background information, while a dual-modality explanation module combines attention-based visual evidence with structured, human-readable textual rationales. We further construct a Vietnamese Cultural VQA dataset sourced from public repositories and use it to demonstrate the practicality of programming-based methodologies for cultural AI. The resulting system provides transparent explanations that disclose both the computational rationale and the underlying cultural context, supporting education and cultural preservation with an emphasis on interpretability and cultural sensitivity.




Automatic Lyrics Transcription (ALT) for Vietnamese music presents unique challenges due to its tonal complexity and dialectal variations, but remains largely unexplored due to the lack of a dedicated dataset. Therefore, we curated the first large-scale Vietnamese ALT dataset (VietLyrics), comprising 647 hours of songs with line-level aligned lyrics and metadata to address these issues. Our evaluation of current ASRbased approaches reveal significant limitations, including frequent transcription errors and hallucinations in non-vocal segments. To improve performance, we fine-tuned Whisper models on the VietLyrics dataset, achieving superior results compared to existing multilingual ALT systems, including LyricWhiz. We publicly release VietLyrics and our models, aiming to advance Vietnamese music computing research while demonstrating the potential of this approach for ALT in low-resource language and music.
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.