In this work we introduce methods to reduce the computational and memory costs of training deep neural networks. Our approach consists in replacing exact vector-jacobian products by randomized, unbiased approximations thereof during backpropagation. We provide a theoretical analysis of the trade-off between the number of epochs needed to achieve a target precision and the cost reduction for each epoch. We then identify specific unbiased estimates of vector-jacobian products for which we establish desirable optimality properties of minimal variance under sparsity constraints. Finally we provide in-depth experiments on multi-layer perceptrons, BagNets and Visual Transfomers architectures. These validate our theoretical results, and confirm the potential of our proposed unbiased randomized backpropagation approach for reducing the cost of deep learning.