This paper introduces a novel trajectory planner for autonomous robots, specifically designed to enhance navigation by incorporating dynamic obstacle avoidance within the Robot Operating System 2 (ROS2) and Navigation 2 (Nav2) framework. The proposed method utilizes Model Predictive Control (MPC) with a focus on handling the uncertainties associated with the movement prediction of dynamic obstacles. Unlike existing Nav2 trajectory planners which primarily deal with static obstacles or react to the current position of dynamic obstacles, this planner predicts future obstacle positions using a stochastic Vector Auto-Regressive Model (VAR). The obstacles' future positions are represented by probability distributions, and collision avoidance is achieved through constraints based on the Mahalanobis distance, ensuring the robot avoids regions where obstacles are likely to be. This approach considers the robot's kinodynamic constraints, enabling it to track a reference path while adapting to real-time changes in the environment. The paper details the implementation, including obstacle prediction, tracking, and the construction of feasible sets for MPC. Simulation results in a Gazebo environment demonstrate the effectiveness of this method in scenarios where robots must navigate around each other, showing improved collision avoidance capabilities.