The quest for higher wireless carrier frequencies spanning the millimeter-wave (mmWave) and Terahertz (THz) bands heralds substantial enhancements in data throughput and spectral efficiency for next-generation wireless networks. However, these gains come at the cost of severe path loss and a heightened risk of beam misalignment due to user mobility, especially pronounced in near-field communication. Traditional solutions rely on extremely directional beamforming and frequent beam updates via beam management, but such techniques impose formidable computational and signaling overhead. In response, we propose a novel approach termed trajectory-adaptive beam shaping (TABS) that eliminates the need for real-time beam management by shaping the electromagnetic wavefront to follow the user's predefined trajectory. Drawing inspiration from self-accelerating beams in optics, TABS concentrates energy along pre-defined curved paths corresponding to the user's motion without requiring real-time beam reconfiguration. We further introduce a dedicated quantitative metric to characterize performance under the TABS framework. Comprehensive simulations substantiate the superiority of TABS in terms of link performance, overhead reduction, and implementation complexity.