



Supermassive black holes at centers of clusters of galaxies strongly interact with their host environment via AGN feedback. Key tracers of such activity are X-ray cavities -- regions of lower X-ray brightness within the cluster. We present an automatic method for detecting, and characterizing X-ray cavities in noisy, low-resolution X-ray images. We simulate clusters of galaxies, insert cavities into them, and produce realistic low-quality images comparable to observations at high redshifts. We then train a custom-built convolutional neural network to generate pixel-wise analysis of presence of cavities in a cluster. A ResNet architecture is then used to decode radii of cavities from the pixel-wise predictions. We surpass the accuracy, stability, and speed of current visual inspection based methods on simulated data.