The quality of Large Language Model (LLM) pretraining depends on multiple factors, including the compute budget and the choice of optimization algorithm. Empirical scaling laws are widely used to predict loss as model size and training data grow, however, almost all existing studies fix the optimizer (typically AdamW). At the same time, a new generation of optimizers (e.g., Muon, Shampoo, SOAP) promises faster and more stable convergence, but their relationship with model and data scaling is not yet well understood. In this work, we study scaling laws across different optimizers. Empirically, we show that 1) separate Chinchilla-style scaling laws for each optimizer are ill-conditioned and have highly correlated parameters. Instead, 2) we propose a more robust law with shared power-law exponents and optimizer-specific rescaling factors, which enable direct comparison between optimizers. Finally, 3) we provide a theoretical analysis of gradient-based methods for the proxy task of a convex quadratic objective, demonstrating that Chinchilla-style scaling laws emerge naturally as a result of loss decomposition into irreducible, approximation, and optimization errors.