Accurate and personalized environment recognition is essential for seamless indoor positioning and optimized connectivity, yet traditional fingerprinting requires costly site surveys and lacks user-level adaptation. We present a survey-free, on-device sensor-fusion framework that builds a personalized, lightweight multi-source fingerprint (FP) database from pedestrian dead reckoning (PDR), WiFi/cellular, GNSS, and interaction time tags. Matching is performed by an AI-enhanced dynamic time warping module (AIDTW) that aligns noisy, asynchronous sequences. To turn perception into continually improving actions, a cloud-edge online Reinforcement Learning from Human Feedback (RLHF) loop aggregates desensitized summaries and human feedback in the cloud to optimize a policy via proximal policy optimization (PPO), and periodically distills updates to devices. Across indoor/outdoor scenarios, our system reduces network-transition latency (measured by time-to-switch, TTS) by 32-65% in daily environments compared with conventional baselines, without site-specific pre-deployment.