The approaches that guide Large Language Models (LLMs) to emulate human reasoning during response generation have emerged as an effective method for enabling them to solve complex problems in a step-by-step manner, thereby achieving superior performance. However, most existing approaches using few-shot prompts to generate responses heavily depend on the provided examples, limiting the utilization of the model's inherent reasoning capabilities. Moreover, constructing task-specific few-shot prompts is often costly and may lead to inconsistencies across different tasks. In this work, we introduce Template-Oriented Reasoning (TORSO), which elicits the model to utilize internal reasoning abilities to generate proper responses across various tasks without the need for manually crafted few-shot examples. Our experimental results demonstrate that TORSO achieves strong performance on diverse LLMs benchmarks with reasonable rationales.