We introduce the tokenized linear bandit (TLB) and multi-armed bandit (TMAB), variants of linear and stochastic multi-armed bandit problems inspired by LLM decoding and alignment. In these problems, at each round $t \in [T]$, a user submits a query (context), and the decision maker (DM) sequentially selects a token irrevocably from a token set. Once the sequence is complete, the DM observes a random utility from the user, whose expectation is presented by a sequence function mapping the chosen token sequence to a nonnegative real value that depends on the query. In both problems, we first show that learning is impossible without any structure on the sequence function. We introduce a natural assumption, diminishing distance with more commons (DDMC), and propose algorithms with regret $\tilde{O}(L\sqrt{T})$ and $\tilde{O}(L\sqrt{T^{2/3}})$ for TLB and TMAB, respectively. As a side product, we obtain an (almost) optimality of the greedy decoding for LLM decoding algorithm under DDMC, which justifies the unresaonable effectiveness of greedy decoding in several tasks. This also has an immediate application to decoding-time LLM alignment, when the misaligned utility can be represented as the frozen LLM's utility and a linearly realizable latent function. We finally validate our algorithm's performance empirically as well as verify our assumptions using synthetic and real-world datasets.