Neural scaling laws provide a predictable recipe for AI advancement: reducing numerical precision should linearly improve computational efficiency and energy profile (E proportional to bits). In this paper, we demonstrate that this scaling law breaks in the context of multi-hop reasoning. We reveal a 'quantization trap' where reducing precision from 16-bit to 8/4-bit paradoxically increases more net energy consumption while degrading reasoning accuracy. We provide a rigorous theoretical decomposition that attributes this failure to hardware casting overhead, the hidden latency cost of dequantization kernels, which becomes a dominant bottleneck in sequential reasoning chains, as well as to a sequential energy amortization failure. As a result, scaling law breaking is unavoidable in practice. Our findings suggest that the industry's "smaller-is-better" heuristic is mathematically counterproductive for complex reasoning tasks.