Standardized laboratory characterizations for absorbing materials rely on idealized sound field assumptions, which deviate largely from real-life conditions. Consequently, \emph{in-situ} acoustic characterization has become essential for accurate diagnosis and virtual prototyping. We propose a physics-informed neural field that reconstructs local, near-surface broadband sound fields from sparse pressure samples to directly infer complex surface impedance. A parallel, multi-frequency architecture enables a broadband impedance retrieval within runtimes on the order of seconds to minutes. To validate the method, we developed a compact microphone array with low hardware complexity. Numerical verifications and laboratory experiments demonstrate accurate impedance retrieval with a small number of sensors under realistic conditions. We further showcase the approach in a vehicle cabin to provide practical guidance on measurement locations that avoid strong interference. Here, we show that this approach offers a robust means of characterizing \emph{in-situ} boundary conditions for architectural and automotive acoustics.