Upsampling LiDAR point clouds in autonomous driving scenarios remains a significant challenge due to the inherent sparsity and complex 3D structures of the data. Recent studies have attempted to address this problem by converting the complex 3D spatial scenes into 2D image super-resolution tasks. However, due to the sparse and blurry feature representation of range images, accurately reconstructing detailed and complex spatial topologies remains a major difficulty. To tackle this, we propose a novel sparse point cloud upsampling method named SRMambaV2, which enhances the upsampling accuracy in long-range sparse regions while preserving the overall geometric reconstruction quality. Specifically, inspired by human driver visual perception, we design a biomimetic 2D selective scanning self-attention (2DSSA) mechanism to model the feature distribution in distant sparse areas. Meanwhile, we introduce a dual-branch network architecture to enhance the representation of sparse features. In addition, we introduce a progressive adaptive loss (PAL) function to further refine the reconstruction of fine-grained details during the upsampling process. Experimental results demonstrate that SRMambaV2 achieves superior performance in both qualitative and quantitative evaluations, highlighting its effectiveness and practical value in automotive sparse point cloud upsampling tasks.