Wind turbine blades operate in harsh environments, making timely damage detection essential for preventing failures and optimizing maintenance. Drone-based inspection and deep learning are promising, but typically depend on large, labeled datasets, which limit their ability to detect rare or evolving damage types. To address this, we propose a zero-shot-oriented inspection framework that integrates Retrieval-Augmented Generation (RAG) with Vision-Language Models (VLM). A multimodal knowledge base is constructed, comprising technical documentation, representative reference images, and domain-specific guidelines. A hybrid text-image retriever with keyword-aware reranking assembles the most relevant context to condition the VLM at inference, injecting domain knowledge without task-specific training. We evaluate the framework on 30 labeled blade images covering diverse damage categories. Although the dataset is small due to the difficulty of acquiring verified blade imagery, it covers multiple representative defect types. On this test set, the RAG-grounded VLM correctly classified all samples, whereas the same VLM without retrieval performed worse in both accuracy and precision. We further compare against open-vocabulary baselines and incorporate uncertainty Clopper-Pearson confidence intervals to account for the small-sample setting. Ablation studies indicate that the key advantage of the framework lies in explainability and generalizability: retrieved references ground the reasoning process and enable the detection of previously unseen defects by leveraging domain knowledge rather than relying solely on visual cues. This research contributes a data-efficient solution for industrial inspection that reduces dependence on extensive labeled datasets.