Cardiac MRI is limited by long acquisition times, which can lead to patient discomfort and motion artifacts. We aim to accelerate Cartesian dynamic cardiac MRI by learning efficient, scan-adaptive undersampling patterns that preserve diagnostic image quality. We develop a learning-based framework for designing scan- or slice-adaptive Cartesian undersampling masks tailored to dynamic cardiac MRI. Undersampling patterns are optimized using fully sampled training dynamic time-series data. At inference time, a nearest-neighbor search in low-frequency $k$-space selects an optimized mask from a dictionary of learned patterns. Our learned sampling approach improves reconstruction quality across multiple acceleration factors on public and in-house cardiac MRI datasets, including PSNR gains of 2-3 dB, reduced NMSE, improved SSIM, and higher radiologist ratings. The proposed scan-adaptive sampling framework enables faster and higher-quality dynamic cardiac MRI by adapting $k$-space sampling to individual scans.