Audio-signal-processing and audio-machine-learning (ASP/AML) algorithms are ubiquitous in modern technology like smart devices, wearables, and entertainment systems. Development of such algorithms and models typically involves a formal evaluation to demonstrate their effectiveness and progress beyond the state-of-the-art. Ideally, a thorough evaluation should cover many diverse application scenarios and room-acoustic conditions. However, in practice, evaluation datasets are often limited in size and diversity because they rely on costly and time-consuming measurements. This paper explores how room-acoustic simulations can be used for evaluating ASP/AML algorithms. To this end, we evaluate three ASP/AML algorithms with room-acoustic measurements and data from different simulation engines, and assess the match between the evaluation results obtained from measurements and simulations. The presented investigation compares a numerical wave-based solver with two geometrical acoustics simulators. While numerical wave-based simulations yielded similar evaluation results as measurements for all three evaluated ASP/AML algorithms, geometrical acoustic simulations could not replicate the measured evaluation results as reliably.