Sidewalk delivery robots are a promising solution for urban freight distribution, reducing congestion compared to trucks and providing a safer, higher-capacity alternative to drones. However, unreliable travel times on sidewalks due to pedestrian density, obstacles, and varying infrastructure conditions can significantly affect their efficiency. This study addresses the robust route planning problem for sidewalk robots, explicitly accounting for travel time uncertainty due to varying sidewalk conditions. Optimization is integrated with simulation to reproduce the effect of obstacles and pedestrian flows and generate realistic travel times. The study investigates three different approaches to derive uncertainty sets, including budgeted, ellipsoidal, and support vector clustering (SVC)-based methods, along with a distributionally robust method to solve the shortest path (SP) problem. A realistic case study reproducing pedestrian patterns in Stockholm's city center is used to evaluate the efficiency of robust routing across various robot designs and environmental conditions. The results show that, when compared to a conventional SP, robust routing significantly enhances operational reliability under variable sidewalk conditions. The Ellipsoidal and DRSP approaches outperform the other methods, yielding the most efficient paths in terms of average and worst-case delay. Sensitivity analyses reveal that robust approaches consistently outperform the conventional SP, particularly for sidewalk delivery robots that are wider, slower, and have more conservative navigation behaviors. These benefits are even more pronounced in adverse weather conditions and high pedestrian congestion scenarios.