Physical Cell Identity (PCI) is a critical parameter in 5G networks. Efficient and accurate PCI assignment is essential for mitigating mod-3 interference, mod-30 interference, collisions, and confusions among cells, which directly affect network reliability and user experience. In this paper, we propose a novel framework for PCI assignment by decomposing the problem into Min-3-Partition, Min-10-Partition, and a graph coloring problem, leveraging the Chinese Remainder Theorem (CRT). Furthermore, we develop a relaxation-free approach to the general Min-$k$-Partition problem by reformulating it as a quadratic program with a norm-equality constraint and solving it using a penalized mirror descent (PMD) algorithm. The proposed method demonstrates superior computational efficiency and scalability, significantly reducing interference while eliminating collisions and confusions in large-scale 5G networks. Numerical evaluations on real-world datasets show that our approach reduces computational time by up to 20 times compared to state-of-the-art methods, making it highly practical for real-time PCI optimization in large-scale networks. These results highlight the potential of our method to improve network performance and reduce deployment costs in modern 5G systems.