Soft robotic suits have the potential to rehabilitate, assist, and augment the human body. The low weight, cost, and minimal form-factor of these devices make them ideal for daily use by both healthy and impaired individuals. However, challenges associated with data-driven, user-specific, and comfort-first design of human-robot interfaces using soft materials limit their widespread translation and adoption. In this work, we present the quantitative evaluation of ergonomics and comfort of the Elevate suit - a cable driven soft robotic suit that assists shoulder elevation. Using a motion-capture system and force sensors, we measured the suit's ergonomics during assisted shoulder elevation up to 70 degrees. Two 4-hour sessions were conducted with one subject, involving transmitting cable tensions of up to 200N with no discomfort reported. We estimated that the pressure applied to the shoulder during assisted movements was within the range seen in a human grasp (approximately 69.1-85.1kPa), and estimated volumetric compression of <3% and <8% across the torso and upper arm, respectively. These results provide early validation of Elevate's ergonomic design in preparation for future studies with patient groups.