This paper presents an improved approach for preserving sharp interfaces in multiphase Lattice Boltzmann Method (LBM) simulations using Physics-Informed Neural Networks (PINNs). Interface diffusion is a common challenge in multiphase LBM, leading to reduced accuracy in simulating phenomena where interfacial dynamics are critical. We propose a coupled PINN-LBM framework that maintains interface sharpness while preserving the physical accuracy of the simulation. Our approach is validated through droplet simulations, with quantitative metrics measuring interface width, maximum gradient, phase separation, effective interface width, and interface energy. The enhanced visualization techniques employed in this work clearly demonstrate the superior performance of PINN-LBM over standard LBM for multiphase simulations, particularly in maintaining well-defined interfaces throughout the simulation. We provide a comprehensive analysis of the results, showcasing how the neural network integration effectively counteracts numerical diffusion, while maintaining physical consistency with the underlying fluid dynamics.