Passive body-area electrostatic field sensing, also referred to as human body capacitance (HBC), is an energy-efficient and non-intrusive sensing modality that exploits the human body's inherent electrostatic properties to perceive human behaviors. This paper presents a focused overview of passive HBC sensing, including its underlying principles, historical evolution, hardware architectures, and applications across research domains. Key challenges, such as susceptibility to environmental variation, are discussed to trigger mitigation techniques. Future research opportunities in sensor fusion and hardware enhancement are highlighted. To support continued innovation, this work provides open-source resources and aims to empower researchers and developers to leverage passive electrostatic sensing for next-generation wearable and ambient intelligence systems.