Variational inference with natural-gradient descent often shows fast convergence in practice, but its theoretical convergence guarantees have been challenging to establish. This is true even for the simplest cases that involve concave log-likelihoods and use a Gaussian approximation. We show that the challenge can be circumvented for such cases using a square-root parameterization for the Gaussian covariance. This approach establishes novel convergence guarantees for natural-gradient variational-Gaussian inference and its continuous-time gradient flow. Our experiments demonstrate the effectiveness of natural gradient methods and highlight their advantages over algorithms that use Euclidean or Wasserstein geometries.