Aligning multilingual assistants with culturally grounded user preferences is essential for serving India's linguistically diverse population of over one billion speakers across multiple scripts. However, existing benchmarks either focus on a single language or conflate retrieval with generation, leaving open the question of whether current embedding models can encode persona-instruction compatibility without relying on response synthesis. We present a unified benchmark spanning 12 Indian languages and four evaluation tasks: monolingual and cross-lingual persona-to-instruction retrieval, reverse retrieval from instruction to persona, and binary compatibility classification. Eight multilingual embedding models are evaluated in a frozen-encoder setting with a thin logistic regression head for classification. E5-Large-Instruct achieves the highest Recall@1 of 27.4\% on monolingual retrieval and 20.7\% on cross-lingual transfer, while BGE-M3 leads reverse retrieval at 32.1\% Recall@1. For classification, LaBSE attains 75.3\% AUROC with strong calibration. These findings offer practical guidance for model selection in Indic multilingual retrieval and establish reproducible baselines for future work\footnote{Code, datasets, and models are publicly available at https://github.com/aryashah2k/PI-Indic-Align.