Pulse-based Quantum Machine Learning (QML) has emerged as a novel paradigm in quantum artificial intelligence due to its exceptional hardware efficiency. For practical applications, pulse-based models must be both expressive and trainable. Previous studies suggest that pulse-based models under dynamic symmetry can be effectively trained, thanks to a favorable loss landscape that has no barren plateaus. However, the resulting uncontrollability may compromise expressivity when the model is inadequately designed. This paper investigates the requirements for pulse-based QML models to be expressive while preserving trainability. We present a necessary condition pertaining to the system's initial state, the measurement observable, and the underlying dynamical symmetry Lie algebra, supported by numerical simulations. Our findings establish a framework for designing practical pulse-based QML models that balance expressivity and trainability.