The aim of this paper is to discuss and evaluate total variation based regularization methods for motion estimation, with particular focus on optical flow models. In addition to standard $L^2$ and $L^1$ data fidelities we give an overview of different variants of total variation regularization obtained from combination with higher order models and a unified computational optimization approach based on primal-dual methods. Moreover, we extend the models by Bregman iterations and provide an inverse problems perspective to the analysis of variational optical flow models. A particular focus of the paper is the quantitative evaluation of motion estimation, which is a difficult and often underestimated task. We discuss several approaches for quality measures of motion estimation and apply them to compare the previously discussed regularization approaches.