Mamba, a selective state-space model (SSM), has emerged as an efficient alternative to Transformers for speech modeling, enabling long-sequence processing with linear complexity. While effective in speech separation, existing approaches, whether in the time or time-frequency domain, typically decompose the input along a single dimension into short one-dimensional sequences before processing them with Mamba, which restricts it to local 1D modeling and limits its ability to capture global dependencies across the 2D spectrogram. In this work, we propose an efficient omni-directional attention (OA) mechanism built upon unidirectional Mamba, which models global dependencies from ten different directions on the spectrogram. We expand the proposed mechanism into two baseline separation models and evaluate on three public datasets. Experimental results show that our approach consistently achieves significant performance gains over the baselines while preserving linear complexity, outperforming existing state-of-the-art (SOTA) systems.