Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:The proliferation of deep neural networks in various domains has seen an increased need for the interpretability of these models, especially in scenarios where fairness and trust are as important as model performance. A lot of independent work is being carried out to: i) analyze what linguistic and non-linguistic knowledge is learned within these models, and ii) highlight the salient parts of the input. We present NxPlain, a web application that provides an explanation of a model's prediction using latent concepts. NxPlain discovers latent concepts learned in a deep NLP model, provides an interpretation of the knowledge learned in the model, and explains its predictions based on the used concepts. The application allows users to browse through the latent concepts in an intuitive order, letting them efficiently scan through the most salient concepts with a global corpus level view and a local sentence-level view. Our tool is useful for debugging, unraveling model bias, and for highlighting spurious correlations in a model. A hosted demo is available here: https://nxplain.qcri.org.