Molecular structure elucidation from spectroscopic data is a long-standing challenge in Chemistry, traditionally requiring expert interpretation. We introduce NMIRacle, a two-stage generative framework that builds upon recent paradigms in AI-driven spectroscopy with minimal assumptions. In the first stage, NMIRacle learns to reconstruct molecular structures from count-aware fragment encodings, which capture both fragment identities and their occurrences. In the second stage, a spectral encoder maps input spectroscopic measurements (IR, 1H-NMR, 13C-NMR) into a latent embedding that conditions the pre-trained generator. This formulation bridges fragment-level chemical modeling with spectral evidence, yielding accurate molecular predictions. Empirical results show that NMIRacle outperforms existing baselines on molecular elucidation, while maintaining robust performance across increasing levels of molecular complexity.