Motile nanosized particles, or "nanobots", promise more effective and less toxic targeted drug delivery because of their unique scale and precision. We consider the case in which the cancer is "diffuse", dispersed such that there are multiple distinct cancer sites. We investigate the problem of a swarm of nanobots locating these sites and treating them by dropping drug payloads at the sites. To improve the success of the treatment, the drug payloads must be allocated between sites according to their "demands"; this requires extra nanobot coordination. We present a mathematical model of the behavior of the nanobot agents and of their colloidal environment. This includes a movement model for agents based upon experimental findings from actual nanoparticles in which bots noisily ascend and descend chemical gradients. We present three algorithms: The first algorithm, called KM, is the most representative of reality, with agents simply following naturally existing chemical signals that surround each cancer site. The second algorithm, KMA, includes an additional chemical payload which amplifies the existing natural signals. The third algorithm, KMAR, includes another additional chemical payload which counteracts the other signals, instead inducing negative chemotaxis in agents such that they are repelled from sites that are already sufficiently treated. We present simulation results for all algorithms across different types of cancer arrangements. For KM, we show that the treatment is generally successful unless the natural chemical signals are weak, in which case the treatment progresses too slowly. For KMA, we demonstrate a significant improvement in treatment speed but a drop in eventual success, except for concentrated cancer patterns. For KMAR, our results show great performance across all types of cancer patterns, demonstrating robustness and adaptability.