https://github.com/diogo-cruz/multi_turn_simpler
While defenses against single-turn jailbreak attacks on Large Language Models (LLMs) have improved significantly, multi-turn jailbreaks remain a persistent vulnerability, often achieving success rates exceeding 70% against models optimized for single-turn protection. This work presents an empirical analysis of automated multi-turn jailbreak attacks across state-of-the-art models including GPT-4, Claude, and Gemini variants, using the StrongREJECT benchmark. Our findings challenge the perceived sophistication of multi-turn attacks: when accounting for the attacker's ability to learn from how models refuse harmful requests, multi-turn jailbreaking approaches are approximately equivalent to simply resampling single-turn attacks multiple times. Moreover, attack success is correlated among similar models, making it easier to jailbreak newly released ones. Additionally, for reasoning models, we find surprisingly that higher reasoning effort often leads to higher attack success rates. Our results have important implications for AI safety evaluation and the design of jailbreak-resistant systems. We release the source code at