Transformer-based self-attention mechanism serves as the core of modern language models, yet it often suffers from localization, where attentions collapse onto a limited subset of tokens and fail to capture long-range dependencies. To address this issue, we propose Self-Attention One-step Belief Propagation (SAOBP), a refinement framework that injects multi-hop relationships through a belief propagation process. To interpret and quantify these interactions, we introduce Global Token Dependency (GTD) that captures the relative contribution of multihop connections within the attention graph. Empirical results indicate that SAOBP helps prevent entropy collapse in deeper layers and adaptively maintains GTD at task-appropriate levels, thereby supporting improvements in model performance. Importantly, we observe competitive gains in small-scale models, highlighting its potential for improving inference quality in resource-constrained scenarios.