Atom probe tomography (APT) is a burgeoning characterization technique that provides compositional mapping of materials in three-dimensions at near-atomic scale. Since its significant expansion in the past 30 years, we estimate that one million APT datasets have been collected, each containing millions to billions of individual ions. Their analysis and the extraction of microstructural information has largely relied upon individual users whose varied level of expertise causes clear and documented bias. Current practices hinder efficient data processing, and make challenging standardization and the deployment of data analysis workflows that would be compliant with FAIR data principles. Over the past decade, building upon the long-standing expertise of the APT community in the development of advanced data processing or data mining techniques, there has been a surge of novel machine learning (ML) approaches aiming for user-independence, and that are efficient, reproducible, and robust from a statistics perspective. Here, we provide a snapshot review of this rapidly evolving field. We begin with a brief introduction to APT and the nature of the APT data. This is followed by an overview of relevant ML algorithms and a comprehensive review of their applications to APT. We also discuss how ML can enable discoveries beyond human capability, offering new insights into the mechanisms within materials. Finally, we provide guidance for future directions in this domain.